首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2749篇
  免费   227篇
  国内免费   3篇
  2023年   10篇
  2022年   11篇
  2021年   55篇
  2020年   30篇
  2019年   35篇
  2018年   38篇
  2017年   35篇
  2016年   73篇
  2015年   107篇
  2014年   120篇
  2013年   159篇
  2012年   256篇
  2011年   206篇
  2010年   141篇
  2009年   132篇
  2008年   191篇
  2007年   175篇
  2006年   194篇
  2005年   153篇
  2004年   195篇
  2003年   146篇
  2002年   137篇
  2001年   32篇
  2000年   14篇
  1999年   33篇
  1998年   34篇
  1997年   28篇
  1996年   16篇
  1995年   22篇
  1994年   18篇
  1993年   29篇
  1992年   18篇
  1991年   11篇
  1990年   17篇
  1989年   17篇
  1988年   11篇
  1987年   10篇
  1986年   13篇
  1985年   13篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1976年   4篇
  1974年   2篇
  1969年   1篇
  1964年   1篇
排序方式: 共有2979条查询结果,搜索用时 421 毫秒
991.
We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C in the soil of Australia. We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C at the continental scale. We describe how we made it by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of stock were predicted at the nodes of a 3‐arc‐sec (approximately 90 m) grid and mapped together with their uncertainties. We then calculated baselines of soil organic C storage over the whole of Australia, its states and territories, and regions that define bioclimatic zones, vegetation classes and land use. The average amount of organic C in Australian topsoil is estimated to be 29.7 t ha?1 with 95% confidence limits of 22.6 and 37.9 t ha?1. The total stock of organic C in the 0–30 cm layer of soil for the continent is 24.97 Gt with 95% confidence limits of 19.04 and 31.83 Gt. This represents approximately 3.5% of the total stock in the upper 30 cm of soil worldwide. Australia occupies 5.2% of the global land area, so the total organic C stock of Australian soil makes an important contribution to the global carbon cycle, and it provides a significant potential for sequestration. As the most reliable approximation of the stock of organic C in Australian soil in 2010, our estimates have important applications. They could support Australia's National Carbon Accounting System, help guide the formulation of policy around carbon offset schemes, improve Australia's carbon balances, serve to direct future sampling for inventory, guide the design of monitoring networks and provide a benchmark against which to assess the impact of changes in land cover, land management and climate on the stock of C in Australia. In this way, these estimates would help us to develop strategies to adapt and mitigate the effects of climate change.  相似文献   
992.
993.
994.
995.

Background

Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains.

Results

Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices.

Conclusion

A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1120) contains supplementary material, which is available to authorized users.  相似文献   
996.
The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides.The study of protein–protein interactions is crucial to understanding how cellular systems function because proteins act in concert through a highly organized set of interactions. Most cellular processes are carried out by large macromolecular assemblies and regulated through complex cascades of transient protein–protein interactions (1). In the past several years numerous high-throughput studies have pioneered the systematic characterization of protein–protein interactions in model organisms (24). Such studies mainly utilize two techniques: the yeast two-hybrid system, which aims at identifying binary interactions (5), and affinity purification combined with tandem mass spectrometry analysis for the identification of multi-protein assemblies (68). Together these led to a rapid expansion of known protein–protein interactions in human and other model organisms. Patche and Aloy recently estimated that there are more than one million interactions catalogued to date (9).But despite rapid progress, most current techniques allow one to determine only whether proteins interact, which is only the first step toward understanding how proteins interact. A more complete picture comes from characterizing the three-dimensional structures of protein complexes, which provide mechanistic insights that govern how interactions occur and the high specificity observed inside the cell. Traditionally the gold-standard methods used to solve protein structures are x-ray crystallography and NMR, and there have been several efforts similar to structural genomics (10) aiming to comprehensively solve the structures of protein complexes (11, 12). Although there has been accelerated growth of structures for protein monomers in the Protein Data Bank in recent years (11), the growth of structures for protein complexes has remained relatively small (9). Many factors, including their large size, transient nature, and dynamics of interactions, have prevented many complexes from being solved via traditional approaches in structural biology. Thus, the development of complementary analytical techniques with which to probe the structure of large protein complexes continues to evolve (1318).Recent developments have advanced the analysis of protein structures and interaction by combining cross-linking and tandem mass spectrometry (17, 1924). The basic idea behind this technique is to capture and identify pairs of amino acid residues that are spatially close to each other. When these linked pairs of residues are from the same protein (intraprotein cross-links), they provide distance constraints that help one infer the possible conformations of protein structures. Conversely, when pairs of residues come from different proteins (interprotein cross-links), they provide information about how proteins interact with one another. Although cross-linking strategies date back almost a decade (25, 26), difficulty in analyzing the complex MS/MS spectrum generated from linked peptides made this approach challenging, and therefore it was not widely used. With recent advances in mass spectrometry instrumentation, there has been renewed interest in employing this strategy to determine protein structures and identify protein–protein interactions. However, most studies thus far have been focused on purified protein complexes. With today''s mass spectrometers being capable of analyzing tens of thousands of spectra in a single experiment, it is now potentially feasible to extend this approach to the analysis of complex biological samples. Researchers have tried to realize this goal using both experimental and computational approaches. Indeed, a plethora of chemical cross-linking reagents are now available for stabilizing these complexes, and some are designed to allow for easier peptide identification when employed in concert with MS analysis (20, 27, 28). There have also been several recent efforts to develop computational methods for the automatic identification of linked peptides from MS/MS spectra (2936). However, because of the lack of large annotated training data, most approaches to date either borrow fragmentation models learned from unlinked, linear peptides or learn the fragmentation statistics from training data of limited size (30, 37), which might not generalize well across different samples. In some cases it is possible to generate relatively large training data, but it is often very labor intensive and involves hundreds of separate LC-MS/MS runs (36). Here, employing disulfide-bridged peptides as an example, we propose a novel method that uses a combinatorial peptide library to (a) efficiently generate a large mass spectral reference dataset for linked peptides and (b) use these data to automatically train our new algorithm, MXDB, which can efficiently and accurately identify linked peptides from MS/MS spectra.  相似文献   
997.
Solid phase peptide library screening followed by extension of a lead recognition element for binding to a dsDNA sequence (NF binding site of IL6) using solution phase screening, delivered a new DNA binding peptide, Ac-Arg-Ual-Sar-Chi-Chi-Tal-Arg-CONH2. In the present research, the contribution of the different amino acid side chains to the binding strength of the peptide to dsDNA was investigated using an ethidium bromide displacement test. Based on these results, the lead structure was optimized by deconvolution. Eight new unnatural amino acids were evaluated at two positions of the heptapeptide replacing the Ual-Sar fragment. The strongest dsDNA binding was observed using ([(3-chlorophenyl)methyl]amino)acetic acid (Cbg) and beta-cyclohexyl-l-alanine (Cha) respectively, at those two positions. A 10-fold increase in affinity compared to the Ual-Sar sequence was obtained. Further enhancement of dsDNA binding was obtained with hybrid molecules linking the newly developed peptide fragment to an acridine derivative with a flexible spacer. This resulted in ligands with affinities in the microM range for the dsDNA target (K(d) of 2.1 x 10(-6) M). DNase I footprinting with the newly developed oligopeptide motifs showed the presence of a pronounced pyrimidine specificity, while conjugation to an intercalator seems to redirect the interaction to mixed sequences. This way, new unnatural oligopeptide motifs and hybrid molecules have been developed endowed with different sequence selectivities. The results demonstrate that the unnatural peptide library approach combined with subsequent modification of selected amino acid positions, is very suited for the discovery of novel sequence-specific dsDNA binding ligands.  相似文献   
998.
The use of volatile production patterns produced by bacterial contaminants in urine samples were examined using electronic nose technology. In two experiments 25 and 45 samples from patients were analysed for specific bacterial contaminants using agar culture techniques and the major UTI bacterial species identified. These samples were also analysed by incubation in a volatile generation test tube system for 4-5 h. The volatile production patterns were then analysed using an electronic nose system with 14 conducting polymer sensors. In the first experiment analysis of the data using a neural network (NN) enabled identification of all but one of the samples correctly when compared to the culture information. Four groups could be distinguished, i.e. normal urine, Escherichia coli infected, Proteus spp. and Staphylococcus spp. In the second experiment it was again possible to use NN systems to examine the volatile production patterns and identify 18 of 19 unknown UTI cases. Only one normal patient sample was mis-identified as an E. coli infected sample. Discriminant function analysis also differentiated between normal urine samples, that infected with E. coli and with Staphylococcus spp. This study has shown the potential for early detection of microbial contaminants in urine samples using electronic nose technology for the first time. These findings will have implications for the development of rapid systems for use in clinical practice.  相似文献   
999.
The caspases are a family of cytosolic proteases with essential roles in inflammation and apoptosis. Drug discovery efforts have focused on developing molecules directed against the active sites of caspases, but this approach has proved challenging and has not yielded any approved therapeutics. Here we describe a new strategy for generating inhibitors of caspase-6, a potential therapeutic target in neurodegenerative disorders, by screening against its zymogen form. Using phage display to discover molecules that bind the zymogen, we report the identification of a peptide that specifically impairs the function of caspase-6 in vitro and in neuronal cells. Remarkably, the peptide binds at a tetramerization interface that is uniquely present in zymogen caspase-6, rather than binding into the active site, and acts via a new allosteric mechanism that promotes caspase tetramerization. Our data illustrate that screening against the zymogen holds promise as an approach for targeting caspases in drug discovery.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号